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Chapter 1

Preface

Exclamation Early Access Edition

This is an early access edition of the book. The core content covering multi-agent
fundamentals, implementation from scratch, and evaluation principles is complete and
ready for you to learn from. The final sections on optimizing multi-agent systems and
real-world applications will be available by November 10, 2025.
As an early access edition, expect rapid updates and improvements based on reader
feedback. While the content has been carefully reviewed, you may encounter minor
mistakes or areas for improvement. Your feedback and suggestions are most welcome—
please open an issue on GitHub to report any issues or share ideas.
Early access buyers receive all future updates at no additional cost.

Writing this book has been an exploration of one of the fastest-evolving fields in technology,
and I’d like to start by sharing my personal experience with AI agents.

In early 2022, the core capabilities of generative AI models began showing incredible promise
in solving various text generation tasks out of the box (question answering, summarization,
and code generation, for example). It became clear that the potential for creating new
types of applications addressing new tasks was immense. At the time, I was working with
the Human/AI Experiences (HAX) group at Microsoft Research, partnering with GitHub to
improve offline evaluation for an early version of GitHub Copilot — arguably the first example
of a modern LLM working in real time at scale to provide large code completions to developers

1
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in an IDE. Our work identified the need for granular metrics (Dibia et al. 2022) to better
capture code correctness and proposed improvements to the UX for Copilot. Early results
showed that Copilot effectively doubled productivity for developers (Peng et al. (2023))!

Soon afterwards, I created LIDA (Dibia 2023)— one of the first systems for automatic data
visualization using language models—in July 2022, months before ChatGPT’s public release.
The system demonstrated how users with no visualization skills could produce high-quality
visualizations, and how authoring time could be drastically reduced even for experts. LIDA
was implemented as a 4-stage pipeline: a data summarizer, visualization goal generator,
visualization code generator, and an optional infographics generator. Ideas from LIDA are
now integrated across Microsoft products (Excel, Fabric, Purview, and internal tools). Since
then, exploring agents—AI models that not only generate artifacts but can also act (call APIs,
execute code, etc.)—has become standard practice.

LIGHTBULB A Note on AI Hype and Reality

In my experience, there are two camps of well-intentioned AI practitioners. The first
fixate on what AI cannot do today, dismissing it as hype. The second explores what AI
can do today, acknowledging limitations while focusing on solving real problems.
When I first showed early LIDA prototypes to researchers, one pointed to a visualization
error and declared AI unsuitable for data visualization based on a 20% error rate. A
month later, with improved prompts and a new OpenAI model release, errors dropped
to 3%—suddenly the reception was entirely different. Meanwhile, product teams who
saw the same demos immediately began experimenting and released features that
improved alongside model updates.
The lesson: take a pragmatic engineering approach. The best AI systems today combine
traditional software engineering practices—proper task decomposition, systematic
evaluation, and optimization—with AI capabilities. This book explores both the practical
applications available today and the longer-term vision of autonomous AI, giving you
the foundation to build effectively in this rapidly evolving landscape.

While creating pipelines encourages reliability (as each step can be independently tested), it
also requires effort and assumes that the correct task decomposition is known, the expertise
to implement each step is available, and the task is static and predictable. These assumptions
often don’t hold true for many complex, real-world tasks that require planning, diverse
expertise, or adaptation in dynamic environments. These observations raised an important
question: How can we create systems that independently adapt to dynamic environments and
generalize to solve multiple disparate task types?

At the time, a few colleagues at Microsoft Research were exploring conversation-based multi-
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agent systems, which felt like a natural way to extend or generalize the rigid pipeline nature
of LIDA. The overall promise was compelling: define discrete agents, give them access to
models and tools, and let them self-organize through conversation to solve general problems.
Even better, these systems could improve across multiple task categories simply through
improvements to the underlying models.

As part of this work, we built a framework around this concept — AutoGen (Wu et al. 2023)—
which was released in May 2023. We identified use cases where conversational and iterative
reasoning capabilities improved system performance, but we also learned hard reliability
lessons. These included agents failing to follow instructions (early models were so polite they
would thank each other endlessly across multiple turns!), the importance of planning and
careful tool selection for performance (see the Magentic One project (Fourney et al. 2024)),
how to build effective developer tooling for these systems (Dibia et al. 2024; Mozannar et al.
2025; Epperson et al. 2025), and the security challenges associated with autonomous agents.

Through this work, I’ve had the privilege of advising dozens of internal Microsoft teams,
customers, including Fortune 500 companies, on implementing multi-agent systems in pro-
duction environments. Additionally, I’ve answered hundreds of questions from startups in
the open-source AutoGen community. This experience has given me a unique perspective
on what the building blocks of multi-agent systems are, where teams typically struggle, and
what practical guidance they need most.

Fifty thousand GitHub stars later, a major API redesign, thousands of open source issues
resolved, and multiple research papers published (Dibia et al. (2024)), AutoGen has helped
shape the AI agent landscape and refine our collective understanding of multi-agent system
design patterns.

The excitement around autonomous multi-agent systems as one way (certainly not the only
way) to build applications has exploded across the entire industry. Today, there are over a
dozen multi-agent frameworks (CrewAI, OpenAI Agents SDK, Google Agent Development
Kit, Pydantic AI, and many others), accompanied by a dizzying array of buzzwords — Agents,
Multi-agent Systems, Memory, Tools, Context Engineering, Computer Use, Agentic Protocols,
and more. Everyone wants to use this technology, but there’s limited clarity on how to do it
well.

As the dust settles, clear patterns are emerging that can guide the development of effective
multi-agent systems — whether you’re building simple agent interactions or complex orches-
trated workflows. This book focuses on identifying these patterns and providing practical
guidance for applying them effectively.
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1.1 About This Book
This book teaches you to build effective multi-agent systems from first principles, regardless
of your chosen tools or frameworks. You’ll learn not just how these systems work, but why
they work—including how to translate business problems into multi-agent architectures.

A note on scope: While this book focuses on multi-agent systems, they’re not the right
solution for every problem. Throughout these pages, you’ll develop not just the skills to build
sophisticated agent systems, but the judgment to recognize when simpler approaches serve
you better.

This book covers:

• Multi-Agent Fundamentals: Core concepts, design patterns, and user experience
principles

• Implementation from Scratch: Building agents, workflows, and orchestration by
creating a complete Python library called picoagents

• Evaluation and Optimization: Testing, measuring performance, and optimizing for
reliability and scale

• Production Deployment: Security, ethics, and responsible AI practices for real-world
applications

• Domain Applications: Complete implementations for information processing, data
analysis, and software engineering

By the end, you’ll know how to choose the right multi-agent architecture for any task and
build your own systems from scratch (should you choose to do so).

1.2 Who This Book Is For
This book is designed for technical practitioners building AI-powered systems—whether
you’re just getting started with agents or implementing them in production.

Primary audience: - System architects and software engineers designing AI applications
with multiple intelligent components - Technical leaders making architectural decisions
about multi-agent implementations
- AI engineers transitioning from individual LLM models to orchestrated agent systems -
Product managers needing to understand multi-agent capabilities and trade-offs

You’ll get the most value if you: - Want to understand fundamental concepts rather
than just framework-specific tutorials - Are interested in implementation details from
scratch—critical for evaluating tools and making architectural decisions - Need practical,
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worked examples you can adapt to real-world problems

Building effective multi-agent systems is roughly 40% theory (understanding models, eval-
uation, translating business problems) and 60% systems engineering (architecture, code,
deployment, scaling). This book reflects that balance, providing both conceptual foundations
and hands-on implementation guidance.

1.3 What Makes This Book Different
This book takes a unique approach compared to other multi-agent system resources:

• Thorough treatment of concepts and theory—Part I provides comprehensive founda-
tions that executives, designers, and technical teams all need to understand multi-agent
systems

• Building production-ready systems from scratch—You’ll build agents and multi-agent
orchestration patterns from first principles, so you understand every component and
design decision

• Focus on evaluation and optimization—Moving beyond simply applying LLMs to
building reliable systems requires evaluation skills often missing from traditional soft-
ware engineering curricula

• Framework and technology agnostic—All examples use Python and are built from
scratch, but can be reimplemented in any language or framework of your choice

• Complete end-to-end approach—The book covers theory (Part I), implementation
(Part II), optimization (Part III), and real-world examples (Part IV), with reusable
sample code throughout

1.4 Prerequisites
To get the most out of this book, you should have:

• Basic Python programming experience
• Understanding of machine learning fundamentals (helpful but not required)
• Experience with command-line tools

1.5 Implementation Philosophy
This book takes a fundamentals-first approach, guiding you through implementing
core multi-agent concepts from scratch. As part of this, we will build a multi-agent
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library—picoagents—from scratch and use it to implement a set of complex use cases. You’ll
learn to build:

• Individual agents and how to configure them with AI models, tools, and memory
components to solve tasks

• Multi-Agent coordination through both deterministic workflows and autonomous
orchestration patterns

• Evaluation and optimization libraries for measuring and improving system perfor-
mance

• End-user integrations that seamlessly embed multi-agent capabilities into applications
complete with the right user experience

By implementing these fundamental building blocks yourself, you’ll gain deep understanding
of the design decisions and trade-offs involved in multi-agent systems. This knowledge tran-
scends any specific framework, equips you with the basics on how/when to use a framework,
and enables you to architect systems that meet your exact requirements.

Framework Examples: Where relevant, I’ll also demonstrate how similar concepts can be
implemented using established frameworks like AutoGen, Google ADK, Pydantic AI, and
other popular tools. This helps bridge the gap between fundamental understanding and
practical development with existing ecosystems.

1.6 How This Book Is Organized
This book is divided into four parts that systematically build your expertise in multi-agent
systems, following a theory -> build -> optimize -> apply progression:

1.6.1 Part I: Foundations of Multi-Agent Systems
Part I establishes the theoretical foundation you need to understand multi-agent systems. This
part is purely conceptual, focusing on core principles without getting into implementation
details:

• Chapter 1: Understanding multi-agent systems—what they are, why they matter, and
when to use them

• Chapter 2: Multi-agent patterns—theoretical frameworks and architectural patterns
for agent collaboration

• Chapter 3: User experience of multi-agent systems—design principles and interface
considerations
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This section provides the conceptual grounding needed before diving into hands-on develop-
ment.

1.6.2 Part II: Building Multi-Agent Systems from Scratch
Part II takes you from theory to practice, teaching you to build multi-agent systems from first
principles. This hands-on section is framework-agnostic, focusing on core implementation
concepts:

• Chapter 4: Building your first agent—fundamental agent creation and basic interactions
• Chapter 5: Building multi-agent workflows—coordinating multiple agents to complete
complex tasks

• Chapter 6: Autonomous multi-agent orchestration—advanced patterns for self-
organizing agent teams

• Chapter 7: Interface agents—agents that accomplish tasks by driving interfaces (e.g.,
a browser or desktop UI)

By building agents from scratch, you’ll understand every component and design decision.

1.6.3 Part III: Evaluating and Optimizing Multi-Agent Systems
Part III addresses the critical challenges of making multi-agent systems work reliably in
practice:

• Chapter 8: Evaluating multi-agent systems—testing, benchmarks, and measuring
success

• Chapter 9: Optimizing multi-agent systems—performance, scalability, and efficiency
improvements

• Chapter 10: Open challenges—handling security, controllability, and edge cases
• Chapter 11: Security, Ethics and responsible AI—implementing guardrails and human
oversight

You’ll learn to address the questions: How do we ensure our systems work correctly? How
do we make them better?

1.6.4 Part IV: Real-World Applications
The final part brings everything together through 3 comprehensive real-world case studies:

• Chapter 12: Information processing—building agents that can gather, analyze, and
synthesize information from multiple sources
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• Chapter 13: Data analysis agent—creating intelligent systems for data exploration,
visualization, and insights generation

• Chapter 14: Software engineering agent—developing agents that can assist with code
generation, testing, and development workflows

Complete implementations, deployment strategies, and lessons learned from real-world
applications demonstrate how theory translates into practice.

1.7 Code Examples and Resources
All code examples in this book are available in the companion GitHub repository: https:
//github.com/victordibia/designing-multiagent-systems

The repository includes: - Complete source code for all examples - Additional exercises and
challenges - Community discussions and updates

LIGHTBULB Laptop-CodeWorking Code References

Throughout this book, you’ll see specialWorking Code callouts like this one that point to
complete, runnable examples in the companion repository. These examples demonstrate
the concepts in action and provide a foundation for your own implementations. Look
for theLaptop-Code icon to find these practical code references.

1.8 References and Academic Sources
The ideas in this book build upon extensive research and development work in multi-agent
systems. Throughout the book, you’ll find citations to relevant research papers, and many
concepts have been explored in blog posts, conference presentations, and open-source projects.
Where possible, original sources are cited—consider exploring these materials for deeper
theoretical understanding and alternative perspectives.

Stay Connected

The AI agent space is evolving rapidly - and this book is written with that in mind. I plan to
have major quarterly releases which will be available as a digital edition on the book website.
Also consider following the book GitHub page for code and other updates.
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• Book Website: multiagentbook.com. The book website also contains a labs section
with useful resources such as an implementation of multi-agent usecases using multiple
frameworks.

• GitHub: Book Code Repository
• Author: Victor Dibia

Note: If you find any issues or have suggestions, please open an issue in the book’s GitHub
repository.

1.9 Acknowledgments
Writing this book has been shaped by countless conversations, collaborations, and insights
from colleagues, friends, and the broader AI community. This work stands on the shoulders
of many researchers and practitioners whose contributions are cited and acknowledged
throughout these pages. I am deeply grateful for their insights and generosity in sharing
knowledge.

My understanding of Human-AI interaction, AI agents, and multi-agent orchestration patterns
has also been profoundly shaped by conversations withmembers of the Human/AI Experiences
(HAX) group at Microsoft Research: Saleema Amershi, Adam Fourney, Gagan Bansal, Jingya
Chen and Hussein Mozannar—thank you for the many collaborations! I am equally grateful
to the leaders of the AI Frontiers lab at MSR, Ece Kamar and Ahmed Awadallah, who have
been incredible mentors and encouraged me to write this book.

Special thanks to Gonzalo Ramos, Steven Druker, Dan Marsal, Dave Brown, and Nathalie
Riche of the Visualization Group at Microsoft Research, with whom I shared early excitement
and collaborated on generative AI for data visualization ideas. Thank you to the many
reviewers who took the time to provide feedback on early drafts of the book including Piali
Choudhury, Sasa Junosovic, and many others.

I am deeply grateful to the AutoGen community — from Chi Wang and Qingyun Wu who
started the AutoGen project, to Jack Gerrits and Eric Zhu, who stepped up to help lead it,
brought engineering rigor, and helped make it a success. Thank you to all the contributors,
early adopters, and community members who have shared ideas, reported issues, provided
feedback, and contributed code. The broader open-source AI community has been instru-
mental in shaping the ideas in this book through countless discussions, thousands of issues
on GitHub and numerous community calls. Thank you!

Finally, I am grateful to my family. This book is as much yours as it is mine — to my wife



CHAPTER 1. PREFACE 10

Hermine for all the support and brilliant feedback along the way, and to my little boy Liam
whose hugs provided the energy I needed when things got tough. Thank you!

Victor Dibia



Part I

Part I: Foundations of Multi-Agent
Systems
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Chapter 2

Understanding Multi-Agent
Systems

This chapter covers:

• The complexity challenge: understanding when individual AI models become insuffi-
cient and why agents are needed

• What defines an agent: core capabilities (reason, act, communicate, adapt) and essential
components (model, tools, memory)

• Complex tasks that motivate multi-agent systems: planning, diverse expertise, extensive
context, and adaptive solutions

• When to use (and when not to use) multi-agent approaches: Multi-agent systems are
not always the right solution; know when to explore or use them.

2.1 Introduction
Generative AI (GenAI) models today have demonstrated remarkable abilities in modeling
complex relationships within the vast amount of data on which they are trained. For example,
models such as GPT-4, Claude, Gemini, etc., also known as large language models (LLMs)
(Vaswani et al. 2017), excel at text processing tasks (for example, summarizing passages,
extracting entities, generating code, etc.). Given the capabilities of these models, they have
now been applied directly within applications to solve tasks in various industries. For instance,
LLMs have been integrated into products for generating marketing copy, reviewing legal

12
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documents for compliance, providing advanced natural language understanding to chatbots
and virtual assistants, and assisting researchers in the scientific discovery process. And
adoption is growing rapidly across both individual users and enterprises. A recent report
states that 75% of knowledge workers are already using AI in the workplace today (Microsoft
AI Blog 2024), and a rising number of startups are building applications that leverage these
models to solve real-world problems.

INFO Quantifying the Shift to AI Agents

It’s widely acknowledged that interest in AI agents is growing rapidly, but by how much?
To answer this question with concrete data, Chapter 10 demonstrates how to build a
multi-agent workflow that analyzes startup data from Y Combinator—one of North
America’s largest startup incubators.
As a preview of both the methodology and results: by analyzing descriptions from
5,622 Y Combinator companies, we found that startups building AI agents grew from
6.1% in 2020 to 47.7% in 2025—a 7.8 -fold increase in just five years. This dramatic
growth signals where the industry sees opportunity: moving beyond AI-assisted tools
to fully autonomous systems that can handle complex, multi-step tasks.
This analysis itself exemplifies the multi-agent workflow patterns we’ll explore in
Chapter 3, with the complete implementation detailed in Chapter 10. Feel free to jump
ahead if you’re curious about the methodology!

Figure 2.1: Growth in Y Combinator startups building AI agents (2020-2025). This dramatic
trend demonstrates the industry shift toward autonomous AI systems.
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However, as tasks become more complex — those that are long-running, involve multiple
steps, require consideration of various perspectives, and necessitate exploration of a dynamic
solution space — these models alone are insufficient. To illustrate this progression and
motivate the need for different types of AI systems, consider the following task examples
(shown in Figure 2.2), representing three distinct levels of complexity:

Complexity Level Task Example Description

Model-Level “What is the height of the
Eiffel Tower?”

Direct information
retrieval from training
data

Agent-Level “Tell me the stock price of
NVIDIA today.”

Requires current data,
planning, and tool use

Multi-Agent “Build a mobile application
that helps users view stock
prices, buy stock and file
taxes.”

Involves multiple
domains of expertise and
iterative development

INFO Definitions: Agents, Multi-Agent Systems, and Tools

Agent: An AI system that can reason, act with tools, communicate, and adapt Multi-
Agent System: Multiple agents working together, each with specialized capabilities
Tools: External capabilities like APIs, code execution, web search that extend agent
abilities

Task 1 can be reliably addressed by retrieving general knowledge facts from a model’s training
data or existing systems such as web search engines. This represents what a model can
accomplish - straightforward information retrieval without the need for planning, tools, or
adaptation.

Task 2, however, reveals where models alone become insufficient. The stock price of NVIDIA
today represents information that an LLM is unlikely to have seen during training; thus, the
results it generates are likely to be incorrect (hallucination). Task 2 requires understanding
the query, planning (e.g., decomposing the task into steps such as fetching current stock data
and analyzing the data to answer the question), action (executing each step using tools like
web search or APIs), and presentation of final results. This is where we need an agent - a
system that combines the reasoning capabilities of these models with tools that enable them
to act on our behalf. Current GenAI applications explore this approach by building prescribed
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solution pipelines that include Large Language Models (LLMs) which drive tools for action.

Task 3 represents a level of complexity that goes beyond what even a capable single agent
can handle effectively. It involves multiple types of expertise (interface design, Android
development, API usage, integration testing, etc.) and requires an iterative solution where
actions are taken and resulting outcomes determine the next steps toward a solution (e.g.,
retrieving appropriate SDK documentation, writing multiple versions of each module in the
app, testing them to identify errors, repairing and integrating until a working application
is crafted). This is where multiple agents become essential - each bringing specialized
capabilities while collaborating to solve tasks that exceed any single system’s scope.

In this book, we will focus on exploring how to address these complex tasks through the
development of applications that implement elements of planning, action and communication
across multiple agents. In turn, these applications hold potential to enable radically new, and
general-purpose digital interfaces, solve new classes of tasks or address existing tasks in a
manner that reduces human toil and effort.

The potential extends beyond generic task automation. When agents understand user context
(current activity, environment, recent interactions) and preferences (explicitly defined settings
and behavioral patterns), they can provide highly personalized assistance with tasks such as
schedulingmeetings, drafting email responses, booking flights, making e-commerce purchases,
and filing taxes.

To realize this potential, we need to understand the fundamental building blocks: What
exactly makes a system an “agent”? How do we build systems where multiple agents work
together effectively? Let’s start by examining these core concepts.
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Figure 2.2: Generative AI models (e.g. Large Language Models) can address a wide range
of tasks including answering general knowledge questions, translating text, summarizing
passages, generating code, etc. However, as tasks become more complex, requiring reasoning,
planning, and action, the limitations of these models become apparent. We can address these
increasingly complex tasks by providing LLMs with access to tools that enable them to act as
agents on our behalf and enabling collaboration across multiple agents.

2.2 A Primer on Generative AI
Generative models are a subset of deep neural networks skilled at identifying complex patterns
within datasets, enabling them to generate new, similar data points. These models are distinct
from discriminative models, which focus on differentiating between data types or classifying
them. Generative models can be trained on data from various modalities. For instance,
models trained on written text in human languages, such as the GPT series, are known as
Large Language Models (LLMs); those trained on images, like the DALL-E series, are termed
Image Generation Models (IGMs); and models trained on both, such as GPT4-V, are often
referred to as Large Multimodal Models (LMMs). This book will concentrate on Generative
Models that generate text output, including both large language models and large multimodal



CHAPTER 2. UNDERSTANDING MULTI-AGENT SYSTEMS 17

models.

The fundamental concept for training generative models is relatively simple. In the case of
LLMs, these models are trained to predict the next word in a sequence or to fill in blanks
for masked or hidden sections of text - aka sequence prediction. By applying this training
objective to a sufficiently large dataset, the models learn representations of the world as
depicted through text. In turn, the models can leverage these representations in generating
text that is coherent, relevant, and contextually appropriate.

To apply these models to solve tasks, early efforts focused on framing multiple tasks as
sequence prediction problems. For example, to classify text, a description of the classification
problem is provided, followed by a list of labels and a prompt asking, “ Which of the provided
labels is the correct class?”. Similarly, to summarize a given passage, given a prompt structured
as “ The summary of the passage above is ..”, the model is induced to generate a summary
of the passage. It turns out that framing tasks as sequence prediction problems allows the
models to leverage knowledge gained during training to perform a wide range of tasks (e.g.,
language translation, sentiment analysis, question answering, dialogue generation, named
entity recognition, syntax parsing, code synthesis, paraphrasing, grammar correction etc.)
beyond their initial training objectives. This background is important to understand the
capabilities and limitations of these models when applied to complex tasks. For example,
the reasoning capabilities observed in these models (e.g. 2 apples + 10 apples = 12 apples)
are often limited to scenarios well represented in training data, with failures to inherently
generalize to rare or unseen scenarios (e.g. solving linear equations in base 3).

The practice of creating sequences that increase the likelihood of successfully completing a
task is known as prompt engineering. Techniques such as few-shot prompting (Brown et al.
2020), where examples of the task and solution are included in the sequence, chain-of-thought
prompting (Wei et al. 2022), where examples of tasks broken down into solution steps are
included, and ReAct prompting (Yao et al. 2022), which combines reasoning and acting in
language models, have become leading prompt engineering approaches. Beyond prompt
engineering, fine-tuning models on task-specific instruction data and explicitly collected
human feedback data (Ouyang et al. 2022) have proven to enhance model alignment - efforts
aimed at ensuring that generated outputs align with human intentions, preferences, and
values.

Finally, while LLMs can be instructed to generate text sequences that solve tasks, the amount
of text they can process at a time is fixed, constrained by what is known as the context window.
The context window size defines the maximum number of tokens (words or word pieces)
the model can handle in a single input and output sequence. This limit is dictated by the
model’s architecture, particularly its computational and memory constraints. Understanding
the context window is crucial for developers as it affects how input data should be structured
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and how tasks should be framed. Strategies like truncation, sliding window techniques,
summarization, chunking, and optimized prompt engineering are essential to operate effec-
tively within these constraints, maximizing the model’s potential in various applications while
balancing computational resources.

2.3 Why Multiple Agents? Complex Task Characteristics
While a single agent can effectively handle tasks like retrieving current stock prices, even
capable agents encounter fundamental limitations when facing highly complex challenges.
Consider our Task 3 from Figure 2.2: “Build a mobile application that helps users view
stock prices, buy stock and file taxes.” A single agent attempting this task would need to
understand application requirements across multiple domains, design user interfaces and
user experiences, write Android development code, integrate stock market APIs, implement
tax filing functionality, and handle testing, debugging, and deployment.
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Figure 2.3: Consider the following complex task - “build an app to view and purchase stock, as
well as file appropriate taxes”. To address such a task, a multi-agent application must derive
a plan (e.g., gather requirements, design an interface, write android code etc), optionally
delegate steps in the plan to various entities with specialized relevant capabilities (agents and
humans), communicate effectively and adapt (recover from errors, explore new approaches)
to solve the task.

Even with access to powerful models and comprehensive tools, a single agent faces several
challenges. The extensive context required quickly exceeds practical limits - existing studies
(Liu et al. 2024) have shown that while LLMs can process increasingly longer text, they are
likely to attend to instructions at the beginning and end of the text, while neglecting data
in the middle. More fundamentally, this task demands diverse types of expertise that are
difficult to encode effectively in a single agent’s instructions.

Complex tasks that motivate multi-agent approaches typically exhibit four key characteristics,
as shown in Figure 2.4. While the presence of any one of these characteristics can increase
the complexity of a task, it is often their combination that presents the greatest opportunity
for multi-agent systems.
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Figure 2.4: Complex tasks exhibit four key characteristics that make them suitable for multi-
agent systems: Planning (requiring multiple steps and strategic thinking), Diverse Expertise
(needing specialized knowledge across different domains), Extensive Context (processing
large amounts of information), and Adaptive Solutions (where solutions emerge frommultiple
attempts). Tasks become increasingly complex when they combine multiple characteristics,
making them ideal candidates for multi-agent approaches.

2.3.1 Planning
Complex tasks often require a high level plan, which involves decomposing the task into
steps that must be completed successfully. Given some context, a plan prescribes a set of
actions that should be executed to achieve some target success state. This is a well-known
and studied property in the robotics planning literature and we will borrow concepts from
this domain across this book.

2.3.2 Diverse Expertise
Decomposing complex tasks into multiple steps often results in steps that can benefit from
specific expertise. For instance, consider the app development task where the objective is
to build a mobile app for viewing and purchasing stocks and filing taxes. This task may be
broken down into steps such as analyzing app requirements, designing the user interface,
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implementing required functionalities, integrating necessary APIs for stock data and tax filing,
and testing and deploying the app. In turn, these tasks map into specific roles that can be
addressed by dedicated agents (e.g. a UX agent, Android App agent etc), each possessing
specialized knowledge and skills.

The separation of expertise allows for a separation-of-concerns approach that single-agent
systems may struggle to achieve following a generic instruction set. From the application
development perspective, creating agents with specific directives provides a useful abstraction
for cleanly mapping responsibilities to specific entities, enabling domain-driven design of
applications.

2.3.3 Extensive Context
Complex tasks often require extensive context that need to be processed to solve the task.
For example, in our app development task, the agents may conduct web search queries as
well as ask for human feedback to assemble requirements, across multiple turns to assemble
the right initial context. Such lengthy instructions or context present a significant challenge
for single-agent systems. Existing studies (Liu et al. 2024) have shown that while LLMs can
process increasingly longer text, they are likely to attend to instructions at the beginning and
end of the text, while neglecting data in the middle. This perspective is also informed by
theories from cognitive science, such as cognitive load theory (Sweller 1988), which suggests
that the human brain has a limited working memory capacity. When presented with lengthy
or underspecified instructions, this capacity becomes overwhelmed, leading to decreased
comprehension and performance.

A multi-agent perspective can help address this limitation by selective context provisioning -
i.e., only sections of available context (for example, a history of actions performed so far)
relevant to a task are provided to an agent focused on that task. By structuring instructions and
managing context in a way that minimizes unnecessary cognitive load, we can significantly
improve task performance in AI systems.

2.3.4 Adaptive Solutions
Complex tasks are often situated in dynamic environments where the exact solution is
unknown or uncertain until some actions are taken. For example, specific data sources
may be unavailable at a given time requiring the exploration of other data sources or each
action may have unexpected side effects etc. For example, in the app development task, the
initial request to the API may fail (e.g., due to a network issue, incorrect argument format
or general changes to the API), requiring the agent to adapt by retrying the request with
different parameters based on the feedback (e.g., error message received from the API request
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or seeking explicit human assistance). In these cases, the solution emerges from adaptation -
iteratively reasoning across some initial plan, actions and outcomes of agents as they solve
the task.

This property is also inspired by insights from metacognition studies, which suggest that an
agent’s awareness and regulation of their own cognitive processes can significantly influence
the problem-solving process. Metacognitive skills, which are challenging for single-agent
systems today, enable agents to reflect on, evaluate, and adjust their strategies in real-time,
leading to more adaptive and potentially innovative solutions within the emergent framework
of multi-agent collaboration.

Given these adaptive requirements, it becomes more challenging to write deterministic
pipelines (e.g., specific prompts, tools), hence the need for agents that can self-orchestrate
(with some autonomy) to address the task.

2.3.5 Examples of Complex Tasks
These characteristics aren’t just theoretical—the 47.7% of Y Combinator startups building AI
agents in 2025 are tackling exactly these types of complex challenges, with concentrations in
productivity (25.5%), software (18.4%), finance (15.6%), health (11.6%), and e commerce
(6.8%) where planning and diverse expertise are essential. See the in-depth analysis in
Chapter 10.

Table 2.2 shows some examples of complex tasks and how they map to each of these properties.

Table 2.2: Examples of complex tasks and their defining characteristics: Planning, Diverse
Expertise, Extensive Context, and Adaptive Solutions.

Task Planning
Diverse
Expertise

Extensive
Context

Adaptive
Solutions

Web App
Development

Requirements,
design,
compliance,
APIs

Developers,
designers,
security, data
experts

Legacy systems,
docs,
workflows,
standards

Security
updates,
feedback,
changes

Financial
Reporting

Data collection,
analysis,
reporting

Analysts,
statisticians,
writers, domain
experts

Market data,
tools, standards,
trends

New sources,
feedback,
market shifts
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Task Planning
Diverse
Expertise

Extensive
Context

Adaptive
Solutions

Tax Filing Data gathering,
analysis, filing,
compliance

Tax advisors,
analysts, legal,
jurisdiction
experts

Records, tax
codes,
regulations,
structures

Law changes,
queries,
corrections

Presentation
Design

Content review,
design,
interactivity

Designers,
editors,
presentation
experts

Content,
audience, goals,
guidelines

Feedback,
content updates,
format changes

Reflecting on these patterns provides context for understanding when and why a multi-agent
approach is beneficial. When tasks are complex, dynamic, and require diverse expertise, a
multi-agent approach can offer the adaptability and collaborative problem-solving capabilities
necessary to manage these tasks effectively. Recent research studies have also highlighted
benefits of multi-agent approaches. For instance, (Du et al. 2023) find that a society of
mind approach (Minsky 1986) - a theory proposing that human intelligence arises from the
interaction of multiple simple agents working together - improves reasoning and factuality
when multiple agents debate outcomes over multiple rounds of conversation turns. Similarly,
(Liang et al. 2023) demonstrate that using multiple agents with separate roles (e.g., agents
that perform a task and agents that adjudicate the quality of the task) can improve the
diversity and quality of generated outcomes.

2.4 What is an Agent?
Definitions of agents vary across the AI literature, from early concepts in robotics to more
recent ideas around entities driven by AI models. A good starting point is the classic work
of Russell and Norvig (Russell and Norvig 2020) that define an agent as anything that
perceives its environment through sensors and acts upon that environment through actuators,
operating through an agent function that maps perceptions to actions. This classical definition
emphasizes perception-action loops driven by logical reasoning.

To illustrate this classical approach, consider a robotic vacuum cleaner: it perceives its
environment through sensors (detecting obstacles, dirt levels, battery status), applies logical
rules (if obstacle detected, turn; if dirt detected, increase suction; if battery low, return
to dock), and acts through actuators (motors for movement, suction mechanisms, brush
rotation). The agent function follows predetermined logic: obstacle -> avoid, dirt -> clean,
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low battery -> recharge. This creates a continuous perception-action loop where each sensor
reading triggers specific programmed responses.

We can build on this foundation but extend it for the generative AI era. While classical agents
operate through predefined functions, generative AI agents maintain the same perception-
action cycle but add sophisticated capabilities: complex reasoning powered by large language
models, dynamic tool use, natural language communication, and adaptive behavior based on
outcomes. These enhanced capabilities make them particularly suitable for the collaborative
problem-solving we explore in this book.

For this book, we define agents as entities that can reason, act, communicate, and adapt
to solve problems. Consider our NVIDIA stock price example (Task 2 from Figure 2.2): an
effective agent must understand the information request, reason about obtaining current
stock data, take action using appropriate tools (web search or financial APIs), and adapt if
the initial approach fails. This adaptation might involve trying alternative data sources or
adjusting the query strategy.

Figure 2.5: An agent is a software entity that possesses core components - a generative AI
model that enables reasoning, tools that enable the agent to act, and memory that enables
the agent to recall and reuse information.
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2.4.1 Core Capabilities
An agent possesses four fundamental capabilities that distinguish it from basic models or
traditional programs:

Reason: Agents can synthesize new information by applying rules or logic to available context.
This reasoning may be deductive, inductive, or abductive and can be driven by a Generative
AI model, custom processing functions, or a combination of both. In our stock price example,
reasoning involves understanding that “NVIDIA today” requires current market data, not
historical information from training data.

Act: Agents can take concrete actions to affect their environment or gather information. This
goes beyond generating text responses - agents can execute code, call APIs, search the web,
or interact with external systems. For the stock price task, acting means actually calling a
financial data API or performing a web search to retrieve current pricing information.

Communicate: Agents can effectively exchange information with users, other agents, and ex-
ternal systems. This includes understanding natural language inputs, formatting appropriate
responses, and knowing when and how to request additional information or clarification.

Adapt: Agents can modify their approach based on feedback, changing conditions, or new
information. If an initial API call fails due to rate limiting, an effective agent might wait and
retry, switch to an alternative data source, or adjust its approach based on the error message
received.
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2.4.2 How Agents Work

Figure 2.6: The agent action-perception loop: Agents operate through iterative cycles where
they take action (such as calling an API), perceive the results (processing the response), and
adapt their approach based on outcomes. When successful, agents provide natural language
responses; when errors occur, they may retry with different parameters or inform users of
limitations.

Agents operate through a fundamental action-perception loop shown in Figure 2.6. Unlike
models that generate single responses, agents work through iterative cycles—taking action,
perceiving results, and adapting based on outcomes until the task is resolved. Multi-agent
systems build upon this principle, with multiple agents running coordinated action-perception
cycles to solve complex tasks that exceed any single agent’s capabilities.

These capabilities are enabled by the three core components shown in Figure 2.5 working
together:
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2.4.2.1 Model

The reasoning engine that enables decision-making and planning. This is typically a large
language model (LLM) or large multimodal model (LMM) that can understand context,
generate plans, and determine appropriate actions. The model serves as the “brain” of the
agent, processing inputs and deciding what to do next.

For agents to successfully accomplish tasks, they must reason over the task state and determine
the appropriate actions to take. This core decision-making capability can be driven by
generative AI models, predefined logic, or explicit human input. Besides generative AI
models, agents can also make use of custom logic (e.g., logic to call an API whenever a
message is received based on some heuristics), or explicit human input to drive their actions
and reasoning. Implementations that intelligently combine multiple drivers—using generative
AI models to reason over the task state and requesting just-in-time human input to provide
feedback—can significantly enhance the quality and adaptability of agent responses.

2.4.2.2 Tools

Tools, also known as skills or plugins, are specific implementations of logic designed to carry
out particular tasks. They serve as the primary method for agents to act on tasks. Tools can
be grouped into two categories: general-purpose tools and domain-specific tools.

General-purpose tools enable a broad range of capabilities, such as a code executor that allows
agents to complete any task expressible as code, or a UI interface driver that allows agents to
carry out tasks formulated as a sequence of UI interactions. In contrast, domain-specific tools
are designed to address a specific task or a set of related tasks (e.g., calling a weather API
with particular parameters). Providing agents with access to tools can significantly impact
the range (diversity) and complexity of tasks that agents can address.

2.4.2.3 Memory

For agents to effectively perform tasks and improve over time, they need memory—the ability
to recall and reuse information from past interactions. This enables agents to learn from
experience and apply lessons to future tasks.

Short-Term Memory acts as working memory for the current task, tracking recent actions,
conversation history, and temporary information needed to complete the immediate objective.
In multi-agent systems, short-term memory often includes shared context so agents can
coordinate effectively.

Long-Term Memory stores accumulated knowledge, successful strategies, and learned pat-
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terns that persist across different tasks and sessions. This allows agents to build expertise
over time and apply past experience to new situations.

Memory implementation varies from simple conversation logs to sophisticated knowledge
bases, with the choice depending on the agent’s intended use and complexity requirements.
We explore specific memory architectures and implementation strategies in detail in later
chapters.

These components work together in a continuous cycle: the model reasons about the current
state and determines what action to take, selects and uses appropriate tools to execute
that action, observes the results, updates its memory with new information, and adapts its
approach for the next step.

INFO Conversational Programming

The action-perception loop described above raises a practical question: how do we
implement such iterative reasoning and action-taking in code?
A powerful approach is conversational programming, where each step in the agent cycle—
reasoning, acting, and processing results—is represented as messages in a conversation.
This creates a structured sequence that captures both the agent’s internal reasoning
and the actions taken (tools used).
This message-based approach aligns naturally with chat-fine-tuned models, which
are designed to process conversation histories and generate contextually appropriate
responses. By representing agent actions as conversation turns, we leverage the model’s
existing strengths in understanding context and maintaining coherent dialogue.
Conversational programming enables agents to seamlessly blend natural language
interaction with concrete actions like code execution or API calls. This paradigm forms
the foundation for multi-agent frameworks like AutoGen (Wu et al. (2023)), where
agents coordinate through message passing—a pattern we’ll explore in detail in later
chapters.

2.4.3 Agent vs. Model: A Clear Distinction
While both agents and models can process natural language and generate responses, agents
differ fundamentally in their ability to interact with the world beyond text generation:

• Models excel at text processing, analysis, and generation based on their training data
• Agents can take actions, use tools, maintain context across interactions, and adapt
their behavior based on results
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Our NVIDIA stock price example (Task 2 from Figure 2.2) perfectly illustrates this distinction:
a model might generate a plausible-sounding but potentially incorrect stock price based
on its training data, while an agent would recognize the need for current information, use
appropriate tools to fetch real-time data, and provide an accurate, up-to-date response.

This ability to move beyond text generation into action-taking and adaptation is what makes
agents powerful tools for addressing complex, real-world tasks that require more than just
information synthesis.

2.5 What is a Multi-Agent System?
Building on our agent definition, we define multi-agent systems as applications that involve
a group of agents, each with diverse capabilities and specialized objectives, collaborating to
solve tasks. While these agents could be embodied in physical robots, this book focuses on
agents that exist primarily in the digital world.
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Figure 2.7: Two approaches to multi-agent orchestration: predefined workflows (left) versus
AI-driven autonomous orchestration (right). The key difference lies in whether control flow
is predetermined or emerges dynamically from AI-driven decisions at runtime.

INFO Multi-Agent System

A multi-agent system (or multi-agent application) is a collection of agents that col-
laborate to solve tasks. Each agent maintains specific capabilities—reasoning, acting,
and communicating—and can adapt to changes in the task or environment. The key
distinguishing feature of multi-agent systems is their orchestration mechanisms: the
patterns that determine how agents communicate, when they act, and how they share
data and control flow during task execution.
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INFO Orchestration

Across this book, we will repeatedly use the term orchestration and it is rather helpful
to define what we mean by the term. Orchestration refers to the mechanisms and
patterns that enable multiple agents to work together effectively toward shared goals.
This encompasses two main aspects - how they share information, and who controls
the flow of execution (the order in which they act).
While academic literature and emerging practices sometimes uses “coordination” and
“orchestration” interchangeably, we use “orchestration” as the primary term throughout
this book to align with industry standards and common usage in AI/ML frameworks.

As shown in Figure 2.7, multi-agent systems can be organized through two distinct approaches.
Multi-agent workflows (left) use predefined control flow where agents follow established
sequences and handoffs, creating predictable and reliable processes. Autonomous multi-agent
systems (right) use AI-driven orchestration where the control flow is determined dynamically
at runtime, enabling adaptive responses to complex or unpredictable tasks. While both
approaches use agents with the same core anatomy—model, memory, and tools—they differ
fundamentally in how orchestration decisions are made.

2.5.1 Two Approaches to Multi-Agent Orchestration
Multi-agent systems can be organized through two fundamentally different approaches, each
suited to different types of problems:

Multi-Agent Workflows (Defined Orchestration) These systems follow pre-defined collab-
oration patterns where each agent has clearly specified roles, responsibilities, and handoff
points. The orchestration logic is explicitly programmed, creating predictable and repeatable
processes. For example, a document processing workflow might have agents that specialize in
text extraction, analysis, and formatting, working in a predetermined sequence with defined
inputs and outputs for each stage.

Autonomous Multi-Agent Systems (AI-Driven Orchestration) These systems use AI models
to drive orchestration decisions, allowing agents to dynamically negotiate responsibilities
and adapt their collaboration based on task requirements and intermediate results. The
orchestration emerges from agent interactions rather than being pre-programmed. This
approach is particularly valuable for complex tasks where the optimal solution strategy
cannot be predetermined and must evolve through exploration and adaptation.

The choice between these approaches directly impacts system behavior: workflows provide
predictability and reliability, while autonomous systems offer adaptability and innovation. We
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explore the specific patterns within each approach in detail in Chapter 2, including sequential
and supervisor patterns for workflows, and group chat and handoff patterns for autonomous
systems.

INFO An Adaptive Multi-Agent Application Example

Consider this scenario: You need to create an application that books flights to specific
destinations at the best price. However, your target airline, specialairlines.com, doesn’t
offer an API—only a web interface and mobile app designed for human users.
This creates several challenges beyond simply finding and booking flights:
Interface Navigation: The system must understand interface content (HTML elements,
visual layouts), determine appropriate actions (clicking buttons, filling forms), and
verify success (checking for confirmation messages). Each action changes the interface
state, affecting subsequent possible actions.
Dynamic Adaptation: The system must handle interface changes (button relocations,
updated form fields) and recover from errors (failed bookings, network issues) through
iterative problem-solving.
Multi-Agent Orchestration: Success requires collaboration between specialized
agents—perhaps a navigation agent for interface interaction, a payment agent for
transactions, and a monitoring agent for verification—along with communication with
human users when assistance is needed.
This scenario illustrates a task where the solution cannot be predetermined but must
emerge through a series of adaptive actions. It exemplifies the complex problems
that require reasoning, acting, adapting, and communicating across multiple agents—
tasks that exceed the capabilities of current single-agent systems and represent ideal
candidates for multi-agent approaches.

LIGHTBULB Distributed Agents: Agents that live across multiple organizational boundaries

Depending on the background of an engineer, the term “multi-agent systems” can evoke
different mental models. For some, the focus is on software entities that collaborate
within a single application/thread/process with similar permission structures. For
others, the focus is on a distributed internet of agents where agents are primarily
unaware of each other (requiring some discovery protocol), permissions (security and
access) are markedly different, and communication must support both synchronous
and asynchronous modes at scale.
In this book, we will focus primarily on the first scenario. While the second is important,
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it is frequently the case that an early focus on distributed agents is overengineering—an
increase in complexity—and there are standard methods that can help us transition to
a distributed setup as the need arises. In the version 0.4 rewrite/redesign of AutoGen,
we specifically provided a runtime concept that could be single process or distributed,
allowing developers to create agents that could run in either mode without changing
the agent logic itself. We found that the vast majority of use cases were well served by
single process/thread applications.
Specifically, in a later chapter, we will discuss emerging protocols for distributed agent-
to-agent communication, the design choices, and how existing agents can be adapted
to work in a distributed setting.

2.6 Why Now?
Multiple factors highlight the importance of multi-agent Generative AI applications today,
including advances in AI reasoning capabilities, economic opportunities through time arbi-
trage, self-improving systems, opportunities to tackle complex tasks, the increasing demand
for reliable automation, platform economics, and the growing need for ethical AI deployment.
These elements emphasize the significance of multi-agent systems in addressing contemporary
challenges.

2.6.1 Advances in Generative AI Reasoning Capabilities
The general premise of multi-agent systems is not new. This topic has been extensively
researched both from the perspective of understanding how humans collaborate to solve
tasks (collective intelligence, crowdsourcing) as well as how artificial agents collaborate
with themselves and humans (robot planning, robot navigation, human-robot collaboration,
swarm intelligence, etc.). However, the development of artificial agents has been limited due
to the lack of a reasoning engine (or artificial brain) that can adapt to context, synthesize
plans that address tasks, and drive actions required as part of such plans. Recent advances in
the demonstrated reasoning capabilities of Generative AI models, such as GPT-3.5 and GPT-4,
change that status quo and now provide a critical component that enables new experiments
and progress in creating truly autonomous multi-agent systems.

2.6.2 Economic Value Through Time Arbitrage
Multi-agent systems offer compelling economic advantages through time arbitrage. While an
agent might take longer to complete a task than a human in absolute terms, the economics
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favor delegation when considering the value of human attention. For example, a task that
costs you $30-100 of time (1 hour at your hourly value) might cost $1-2 for an agent to
complete over 2-3 hours. As GenAI inference costs continue to drop while human time
becomes more valuable, this equation only improves.

2.6.3 The Promise of Self-Improving Systems
Unlike traditional software that requires engineering effort to improve, multi-agent systems
can automatically benefit from advances in underlying AI models. This creates a unique
opportunity to build systems that compound in value over time with minimal additional
investment.

INFO Note

Across my career, I have seen multiple instances where the performance of systems
where capabilities are delegated to AI agents improve as the underlying model improves.
A good example is my work with LIDA - a workflow based mult-iagent system for
automatically generating visualizatons from data. The initial version of this system
built with the davinci model family from openai had a 20% error rate on the initial
evaluation harness. Simply switching to GPT 3.5 turbo which became available a few
months after led to an error rate reduction form 20% to 3% across the board. I still see
these sort of system level improvements as new advanced models become available.

2.6.4 Opportunity to Address Tacit Knowledge Tasks
Many repetitive problems today have been difficult to automate or support with reliable
software tools. Existing research suggests that some of the automation challenges arise
because these tasks require tacit knowledge— a form of knowledge that is challenging to
articulate or codify but more readily transferred through experience or practice. However,
groups of agents enabled by LLMs that encode vast amounts of knowledge and can collaborate
with humans and other agents provide a new opportunity to address these complex tasks. This
approach can help automate tasks that were previously considered infeasible to automate,
thus reducing human effort and potentially errors.

2.6.5 Increasing Demand for Reliable Automation
Businesses and individuals seek AI solutions that can autonomously execute sophisticated
tasks while maintaining high levels of reliability and safety. Humans should still remain in


